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SIMS: Single Interface to Multiple Systems

Jasmina Pavlin Raymond L. Bates

I Introduction

Most of the tasks performed by users of information systems involve interaction with multiple

software servers. A typical task may involve database retrieval, data interpretation, numerical

calculation and report generation. The servers can be vastly different in their functional ca-

pabilities, view of the world and their input and output languages (e.g., databases and expert

systems). The user must understand the language and services provided by each server, and ex-

press his task in the terms used by the server before he can decide whether the server provides a

service required to perform the task. The application of servers is solely the user's responsibility.

The system cannot help the user figure out how to perform his task, since there is no explicit 1'

representation of services provided by a server. Even when the user fully specifies his task in J%

terms of available servers, he has to perform the task manually in all but the simplest of cases

(e.g., UNIX pipes). The user's job is not only difficult, but also prone to numerous errors, due 7

to its ad hoc nature. We term the problem facing the user the software integration& problem. It I

consists of:- selection and sequencing of software servers, enforcing compatibility between inputs-

and outputs of different servers, server invocation, execution monitoring, and result formulation.

Avali8t~l1lty Codes_ $
- Avn11 and/or
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The only approach to the software integration problem has been to build custom systems

that support the iutegrated view of underlying servers. The advantage of custom systems is that

the user can state his tasks in server-independent terms, and does not need to understand the

language and the functionality of each server. Such systems are hand-crafted for the application

at hand, and are built at great expense. Although they may be well polished and functional,

they are very difficult to modify and generalize, because the integration is hardwired into the

system. The principles underlying the integration are at best known only to the system designer,

and are at worst nonexistent. Typically, when a new service is needed, the new system is built

from scratch, since adding a server to the existing system or modifying an existing server to

provide a desired service carries a high risk of inconsistent behavior. Thus, what should be

a minor change results in a major design and programming undertaking, with little chance to

utilize the experience gained from the old system.

Our goal for this work is to ensure that the versatility of accesible services bring only an

advantage and not a burden to the users and designers of systems. The system should give to the

user all the advantages of a custom-built system and should not suffer from the inflexibilities

that hurt maintainers and future designers. The SIMS project is predicated on providing a

framework for the integration of software services that result in such systems. The following '

features are essential for its design:

770

" SIMS abstracts out the differences between servers by providing a server-in dependent in-

teraction language.

* SIMS' approach is logical integration, where the servers remain separate, but a common

2
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model makes them appear as if they were providing a single virtual service.

" The integration is principled, that is, there is a well defined procedure for system modi-

fication when an underlying server is changed or added and this procedure is limited in

scope.

" The sequencing is dynamic, that is, the sequence of servers that perform the task is deter-

mined when the task is defined. This is in contrast with static sequencing (determining

and storing all possible mappings between tasks and servers at design time), where adding

a new server may involve revision of all mappings in the system. Dynamic sequencing does

not suffer from this problem, and allows for optimizations based on runtime conditions.

Software integration is central for the design of a new generation of user interfaces which will

be easier to design, maintain and use, due to the high level of separation between the application

services and other interface functions. In this paradigm, SIMS works as an intermediary between

the interface and the application. The interface presents requests to SIMS in a canonical form

(a formal language of the task domain), and SIMS provides results (or error conditions) in the

same canonical form to the interface. SIMS is responsible for all interactions with application

servers.

We are building a system following this paradigm in conjunction with the Integrated In-

terfaces project [KACZ 861 at Information Sciences Institute. The Input Analysis component

of the system transforms inputs entered in various modes into requests expressed in the for-

mal language acceptable by SIMS. Requests that involve interaction with servers are related

3



to SIMS. The Central Coordination component gives the output of SIMS to the Presentation

Planner, which decides which presentation modes to use in order to give this information to the

user. Domain and system knowledge used by all components of the system is contained in the

Capability Knowledge Base. The architecture of the system is shown in Figure 1.

Ca pability
Knowledge Base

Window (CBWindow
Server Iw.CK)' Server

Text YText

D Input Central "Presentation
User -D- Gesture :1 Analysis Coordination Planning -Mp srV41 (I CC (P

* Device SigeItr)Device
Drivers Multiple S sem Drivers

Server, Server2 . . Server
1 2 n

Figure 1: The Integrated Interfaces User Interface Architecture.

Design is simplified in this paradigm because of a clean separation of concerns between the

interface designer and the application designers. The interface can be developed before the

application, for example, as long as the specifications for the functionality exists. Also, since

the functionality of application servers is accessible to SIMS, code reusability is facilitated. The

main advantages of this approach, however, will come as the systemn evolves, since the interface

can remain unchanged when underlying servers are modified. A stable and reusable interface%%

is important not only from user's point of view, but also from software engineering standpoint,

where it has been recognized that more than half of the work required in setting up the system is

4 4
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spent on the interface design [CARL 79]. The separation advantage works in the other direction

as well. If the interface needs to be changed (e.g., customized to suit a particular class of users)

the application can remain the same. Since the interface is freed from the application concerns,

it can be made consistent and easier to use.

Some aspects of the general problem of software integration have been addressed by existing

systems on a limited scale. The UNIX pipe utility invokes a specified sequence of single-input and

single-output servers whose input and output is of a single type (byte string). The motivation

for SIMS comes from the commonly heard comment of pipes' users: "This is a fine idea, if only

it would go a bit further!" We plan to extend out work in several dimensions, such as:

" expressing the task in server-independent terms;

" automatically determining the combination of servers that satisfy the task;

" allowing for other control structures besides a simple sequence of servers;

" Execution monitoring and replanning around errors; and

" Reformulation of the result into the task language.

Abstract Data Types [STEM 86] provide one tool for software integration, since they repre-

sent a high-level specification of data that allows more complex structures to be passed between

* servers. Object-oriented languages [STEF 86] define legal communication methods between ob-

jects and thus simplify the problem of testing the compatibility of servers. Integrated database

research [MOTR 80] addresses a different but related problem of combining database schema.

5

el r W_



Physical integration is performed, resulting in a single database. In contrast, SIMS' approach

is in logical integration.

In its most general form, the task of dynamic software integration is more difficult than -

the general automatic program synthesis task. The program that performs the task should be

synthesized and executed - the results should then be presented to the user. Fully automatic

synthesis of arbitrary programs is itself too difficult, particularly because of the combinatorics

involved in the search for possible transformations between the source and the target language.

At least some of the following simplifications of the problem are made [FEAT 86):

" The process is niot fully automatic, i.e., it is allowed to take advice from the programmer. P

" The source language is simplified at the expense of generality.

" The programming task is highly restricted.

SIMS takes an advantage of the last two simplifications, as a natural consequence of the

problem it is addressing, which is software integration in the context of information services.N.

* Information services provide a highly structured but a not-trivial class of tasks for which dynamic

software integration has a great practical value. The types of requests are naturally limited (e.g.,

to requests for objects of a certain class among which certain relations hold). For a large class

of useful requests, the search space can be pruned to a small size by eliminating services that

are irrelevant for the request. The number of ways in which the services can be combined for a S

given task is also relatively small (compared to the number of ways in which a typical program

6
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can be synthesized), since each server provides a highly specialized function. Thus, automatic

software integration is both useful and tractable in the domain of information services.

Major subproblemns that SIMS must address are: representation, formulation (of the requestI in server terms), execution monitoring, and formulating the results in terms of the request

language. They are discussed in the following sections.

Section 2 describes a uniform representation for services and requests in terms of relations.

A server is represented by a number of service relations, one for each distinct function provided

by the server.

Section 3 presents our approach to the formulation problem ( mapping between the request

and the available servers) which consists of three steps. In the first step, service relations that

are irrelevant for the request are eliminated. The second step finds a combination of service a

relations that satisfy the request. Multiple combinations (paths) are provided by the algorithm.

The same service can be provided by multiple servers or by multiple ways to invoke the same

server. The role of the last step is to find the best path to use, based on a utility model of each p

server. The final subsection of Section 3 describes some mechanisms for correction of requests

*that cannot be satisfied as formulated.P

Section 4 discusses the recovery of execution errors, which is accomplished by retaining

'a multiple paths and multiple servers within the same path. Its efficiency depends on retaining as

* much of the current path as possible. p

Section 5 outlines our initial solution to the problem of formulating the results in the request

7 W
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language, once the request has been successfully satisfied.

Section 6 provides a brief summuary and an indication of our immediate short-term plans for

p Sims.

2 The Representation Problem

In order to mediate between the request and the available services, we need to represent the

space of possible requests (the request space) and the space that contains a representation of

the functionality of all servers (the service space). In addition, we need to define the mapping

between the twc spaces.

- In our approach, a server is represented by a collection of relations, one relation for each

service provided by the server. To simplify the terminology, we will refer to service relations

simply as services when no confusion could arise.

Initially, we have considered servers of two types: relational database management programs

* and batch application programs that provide functions without side-effects. We will relax these

restrictions to programs with side-effects, interactive programs, and expert systems in the do- a

* main of information services.

* A service relation of a database server corresponds to a retrievable unit of data, so there

* are as many service relations as there are relations in the database. In SIMS, service relations

are represented by an object, and elements of this relation are attributes of the object. An
%
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application program can provide several functions, one for each entry point in the program. A

function can also be viewed as a relation between its inputs and outputs. So, each entry point

of an application program also defines one service relation. A database relation differs from a

function in that all its attributes can be used either as inputs or as outputs, so data can be

obtained even if no inputs are provided (by dumping the whole database table). The attributes

of a function have distinct constraints on which of them have to be supplied as input.

The semantics of a service relation are established by defining lower-order relations between

its attributes which we term dependencies. For example, a database relation called SHIP-

DESCRIPTION with three attributes AREA, SHIP, and EMPSKD (employment schedule) can AV"

be represented by the SHIP-DESCRIPTION service and two dependencies: IN-AREA with

attributes AREA and SHIP, and SHIP-EMPSKD with attributes SHIP and EMPSKD. A func-

tion that takes an area as input and returns data for generating the corresponding map can beIS

represented by the MAP-OF-AREA service with two attributes: AREA and MAP.

Multiple servers can represent the same information differently. The simplest aspect of

this is the alternative naming problem. For example, two functions can name the same data

differently. In a more complicated case, a group of attributes of one relation corresponds to

a single attribute of another service relation. For example, a DATE attribute of one relation

can correspond to three attributes of another relation: YEAR, MONTH, and DAY. In general,

semantics of data provided by different servers can be related in an arbitrary way. We provide

logical integration of servers by merging the service of different servers into a single, coherent

service space. In the service space, the differences between semantically equivalent services are

9%



abstracted out. The service space is a hierarchy of service relations. One service is a subclass

of another if it has additional dependencies or additional input constraints. An important part

of the merging process relies on the semantics of the real-world objects represented by data

available from servers, and hence the formation of the service space cannot be fully automated,

but it appears that relatively few actions (similar to those described in [MOTR 80]) have to be

performed so this procedure is well defined.

User requests are represented using the same notation and the same terms (attributes) but

possibly different relations from those found in the service space. The requests in the request

space are also hierarchically structured. A sample request 1 might be "Select situation data

in South China Sea." This request is satisfied by collecting the situation relation objects. The A

SITUATION relation might have AREA, MAP, SHIP, and EMPSKD attributes, with these

dependencies: MAP-OF-AREA between MAP and AREA, IN-AREA between AREA and SHIP,

and SHIP-EMPSKD between SHIPS and EMPSKDS.

The request space allows the representation of requests in server-independent terms. This is

important for two reasons. First, the choice of service relations is often guided by implementation

considerations; the resulting terms may be very different from the terms in which the user thinks

about the domain. Second, a desired property of the request language is stability: changing the

service space (for example, by adding a server) should involve the smallest possible change in

the request language. Adding a server may involve a revision of the service space, while the

request space that represents domain relation~s should change little or not at all when a server

'This is a natural language paraphrase of the request expressed in a formal language.

10 5
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in the same domain is added.

3 The Formulation Problem

-51j

The formulation problem involves transforming the request into an equivalent form expressed

in terms of the service relations and executable by available servers. We will assume that

the request is a conjunction of predicates, equivalent to the "select/project/join" operations of

relational algebra [MATE 83].

One approach is to treat it as a min-cost path problem, and to use graph search, A* style

algorithm [NILS 80). This approach has been taken in [KAEM 86]. A node in the graph is a

set of services covering some portion of the request, and the start node is the empty set. The

solution path is a sequence of services, which combine to cover all dependencies in the request

and satisfy input constraints. A heuristic function with two components (called g and h in

[NILS 801) is used to generate successors of a node n. The g(n) component is the cost of the

path from the start (empty set of services) to node n, represented by the cardinality of the set

n. The second component of the heuristic function is the estimated cost of the path from node n

to the goal node, represented by the number of dependencies in the request not covered by node

n. The algorithm tests each generated node for feasibility (satisfaction of input constraints).,p
.

Only one path is returned by the algorithm (the first one found to be feasible). The algorithm

assumes that a path will be found and makes no attempt to deal with errors.

There are several problems in this approach. One is that the heuristic function used by the

11
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algorithm is not admissible [NILS 801 since his not a lower bound on h (the actual cost of the

path from the current node to the goal node). A more serious problem is that the goal of the

algorithm is not to find any path but to find a feasible path, and thus the heuristic function

used is a poor indicator of progress towards the goal. Another problem is the simple notion of

optimnality, which assumes that all calls to all servers carry the same cost, so the cost of a path

is only proportional to the length of the path. Our main objection to this approach, however, is

that the feasible cover algorithm has an unrealistic view of optimality and a complete disregard

for robustness. We are taking a more balanced approach to the formulation problem.

3.1 Our Approach to the Formulation Problem

Our formulation algorithm takes an advantage of the hierarchical structure of the service space.

It finds relevant services to satisfy the request by first classifying a request relation in the service

space, and then finding the services that subsumne it ISOHM 831. The role of the classifier is

twofold: to filter out services that are irrelevant for the request (either because they do not

share any dependencies with the request, or because their input constraintE are not satisfied),

and to provide a list of relevant services in the order of their specificity (most specific first). '

Formulation proceeds in stages. At every stage, the request is reformulated to reflect what

portion of it remains to be satisfied, new classification is performed and the first service returned

by the classifier is added to the sequence. The service "sequence" may, in fact, contain loops,

local binding, and other programming constructs. A loop is necessary to "connect" a service

that provides multiple values with another service that should be selected repeatedly using%

12



these values one by one. For example, if one service provides ships, and another links a ship

with an employment schedule, a loop is needed to get employment schedules for all ships.

These programming constructs are needed to enrich the server languages, most of which cannot

handle requests from the previous example (e.g., SQL). The result of formulation is a kind of

specification, since it has a structure of a program but is not executable (until services are

replaced by actual server calls).

The process continues until all request dependencies are covered. The specification defines

multiple paths for two reasons. First, an optimal path cannot be determined at this stage, since

the cost of a path is a function of servers providing the services, so there are no good criteria for

singling out one path before the servers axe chosen. Second, robustness is assured by providing

an alternative path if a path fails during execution. The number of paths is typically small, so

in our current implementation all paths are returned. If this is not the case, it is easy to s,3t a

desired limit on the number of paths, but multiple paths should still be retained.

3.2 Finding Servers

The goal of this last step of the formulation algorithm is to find servers that provide services

found at the previous stage. The services can be thought of as subgoals that need to be achieved

as a part of the request, and we use a hierarchical-style planner [WILK 84] for this task. Alterna-

tive plans correspond to different ways to obtain the same service relation. This can mean using

a different server, or a different way to invoke the same server. A plan has an associated goal

(the service it can provide), preconditions (conditions that must be true for the plan to begin -

13
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for example a database being attached or a program being loaded) and method (exact language

for providing the corresponding server call). This stage of processing focuses on optimality, so

we also define the utility of performing a plan. The utility is a function of the characteristics of

* the server providing the service and of the overall system state at the time the plan is invoked.

The utility of a server is characterized by its time/space requirements, its likelihood of failure,

and the reliability of data it provides. The system state affects the utility of a plan as well.

The utility is improved, for example, if an application program is already loaded: subsequent

fntoswill be less expensive to invoke. On the other hand, the utility can be reduced in the

cases where there is barely enough room in memory to load the program.

A general-purpose plan for satisfying a service goal is to retrieve locally available results

(without invoking a server), providing that these results have been stored. A result should

be stored (cached) if it is safe and worthwhile to do so [MOST 851. A result is safe if a later

invocation of the same server gives either the same or acceptably different results. Functions

without side-effects are always safe, and database services are guaranteed to be safe if there

are no intervening updates. Caching is worthwhile if it is cost-effective and if it is likely that

the same result will be needed again. Caching is cost-effective if time/space requirements of

invoking a server are greater than the time/space requirements for storing and retrieving the

%A

cached result. The likelihood that a result will be reused is based on the pattern of user's /

interaction with the system, and must be provided by the domain expert. Since only safe and

worthwhile results are cached, the plan for using cached results always has a greater utility thanN

* the corresponding plan for calling the server.

14 %0
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When the planner finds candidate plans for each goal, the utility of alternative paths for

satisfying the request can be determined, and the best path is then selected for execution.

3.3 Request Formulation Errors

If a request cannot be satisfied as stated, a robust approach should invoke some request repair

mechanism instead of failing. There are two approaches to request formulation errors. The

first approach makes a basic assumption that the user "does not know what to ask", so the

system should interact with the user to help him clarify his intentions. This approach has

been taken in [MOTR 87] and [TOU 821. We take a different approach: we assume that the

request is a correct (although possibly high-level) representation of the task that the user wants 0

performed, and that a representation for requests of this class exists in the request space. So,

the request cannot be satisfied only because some dependencies of the request are not contained

in any services, or because the input constraints cannot be satisfied. If we represent the partial

solution (combination of services that are found to satisfy some portion of the request) as

a data-flow graph, then the completion of the request can be formulated as the problem of

finding a connected "extension" of the request graph. From this standpoint, the problem can be 21.

approached on either syntactic or semantic grounds. Our request repair mechanism first takes a

semantic approach, assuming that the error has occurred because there is an apparent a~tribute-

type mismatch between the output of one service and input of another. Since all attributes form

a type hierarchy, this hierarchy can be used to a) test whether the mismatch is real, and b) to

attempt type coercion. The following cases can arise:

'r



" The service expects a type and its subtype is supplied. In this case, no special action is

necessary, since the classifier will recognize that the service is applicable for the task.

" The server expects a type and its supertype is supplied. For example, one server provides

ships, and the next expects battleships. Here, a runtime test must be introduced to verify

that the data provided are still appropriate, e.g., to verify that the ship is a battleship.

Such test is either one of the services in the system, or its result must be supplied by the

user. To determine if such a test is one of the services, the test is posed as a request to the

system and the classifier is used to find the corresponding services. If the service is found, .

the resulting program will start with a type test, and then branch to the appropriate server

call if the test is positive, or to the appropriate error condition if the test is negative.

Two types are not in subtype-supertype relation. This problem cannot be solved in gen--"

eral, but a transformation of one type into the other should be attempted if the types are V

equivalent. The equivalence is a semantic relation that must to be marked in the service

space. Two attributes are equivalent if their corresponding value pairs form a bijection in

all services where they appear. For example, names and social security numbers are at-

tributes with such a property. If an equivalent relation can be found, then the appropriate

transformation (e.g., from name to the social security number) is introduced to complete

the specification.

Another strategy for dealing with a request that cannot be satisfied is to satisfy "most of"

the request. An approach to this problem must break down the request into identifiable subtasks

and specify the portion of the request that is satisfied by each of the subtasks. This is easy to NP

16
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do for some requests (e.g., if the request is to give a report about ship schedules, providing ship

data in some other form would do "most" of the job), but general strategies are difficult to

define.

If the attempt to correct the error using semantic methods fails, a syntactic approach could

be attempted. It would be reasonable to find the most compact graph that spans the request.

This is a graph-theoretic problem known as the Steiner Tree Problem. However, the resulting

graph may not be the intended representation of the user's request, and the extension must be

verified with the user.

4 Execution Monitoring and Error Recovery

If a plan fails during execution, recovery should be attempted. For reasons of efficiency, we try

to retain as much of the currently executing path as possible, by attempting the smallest change

first. The smallest change is no change at all, that is, trying to execute the same plan again. This

strategy is effective for some types of errors (e.g., a random error during a function invocation).

If this strategy is not appropriate, the next repair mechanism is to substitute the plan by an

alternative plan satisfying the same goal. An alternative plan should be rejected if it is likely to

fail as well. For example, if the plan failed because the access to the remote cite containing the

server was disabled by a permanent network failure, all other plans for accessing data from this

cite will also fail. This is an example where a failure of one plan can have implications on other

parts of the path (if there are plans involving the same cite elsewhere in the path). If such plans

are to be performed in the future, they have to be replaced as well.

17 %
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The situation is different if the plans have already been performed, since the planner keeps

the history of partial results during the execution of one path. Saving partial results during

the satisfaction of one request is worthwhile in almost all cases, since the results are definitely

needed to satisfy the request. The planner must, however, test whether a result of the plan

is safe to reuse instead of invoking the plan again. For example, if a database table has been

updated during the execution, the plan for accessing this table later must be performed again.

Another advantage of stored results is in reusing them in the context of another path. Namely,

it may be the case that no alternative plans for the same goal are available, and an alternative ,

path should be pursued. When switching to an alternative path, the old path results that are

still valid can be substituted for appropriate goals.

The strategies for error recovery are dependent on the hardware and software characteristics V

of available servers, and the environment in which the SIMS system is running. We assume

in this work that these strategies have been provided by appropriate domain experts, and the

role of SIMS is to provide mechanisms that make use of these strategies to assure efficient error

recovery.

5 Formulating Results in the Request Language

There are three problem in formulating the results of a request:

1. Different servers can provide results in different form. We are currently dealing with this

problem by transforming all output into a uniform representation. This solution may be

18
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impractical for large data structures, and we are investigating other approaches to this ,.

problem.

2. Some of the results are only needed in the process of request satisfaction, and they are not

required as a part of the final result. For example, SHIP-ID may only be needed to access

the employment schedule database table, and they are not a part of the SITUATION

object requested.

3. The components of the request are distinguished from its output form, which can be an

arbitrary structure and is a part of the definition of the requested object. For example,

already mentioned request for SITUATION consisting of AREA, MAP, SHIPs and EMP-

SKDs ought to specify that the result is a single SITUATION object with two parts, a

MAP and a number of SHIP-DESCRIPTION objects. A SHIP-DESCRIPTION object is

itself a complex structure, consisting of the name of the ship (the SHIP attribute) and its

employment schedule (EMPSKD attribute).

We deal with the second and third problem by defining output form as part of the request. The

language of output forms currently specifies the relations between the components of the output

object as a tree structure.

6 Summary r

Most of the tasks performed by users of information systems involve interaction with multiple J.

softwareservers. In order to perform such a task with existing methodologies, the user has to

19



formulate it into subtasks that can be performed by servers in the system. For this, he must

know what servers are available, and must speak the language of each. Even when formulation

is complete, the user has to invoke each server manually, since the output of one server may

not quite "fit" the input of another. If a server fails, the user has to find an alternative way to

perform the task, and the results obtained before failure are most often lost.

A tool that can accept input request in a server-independent language and can automatically

select, sequence and invoke information servers is of great practical value: it relieves the human

user of the burden, and it furnishes a novel opportunity for software integration because it

permits the "user" to be another computer system. The system we are developing, SIMS,

provides just such capabilities.%

The main functions of SIMS are: planning which servers to use and how to combine them;

monitoring the execution and replanning around errors; and transforming the results into the

form requested. The main characteristic of our approach is that we try to balance the trade-offs

between efficiency, optimality, and robustness. The planning phase relies on a model of server

functionality and utility. The functionality is expressed in a hierarchical relational model, which

gives rise to efficient algorithms for finding paths through services. An optimal path is found

using the utility model, which characterizes servers in terms of the time/space requirements a

and the quality of data they provide. Robustness is achieved by specifying multiple paths and

multiple servers, and efficiency is achieved by making only minimal modifications to the current

path in case of an execution failure.

We have designed an architecture for SIMS, and the initial system implementation in Coin-
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